Similarity

by Paper Miqdad

Submission date: 08-Jan-2021 01:07PM (UTC+0500)

Submission ID: 1484474548

File name: paper_miqdad_masood.docx (113.89K)

Word count: 3535

Character count: 18495

A Technical Feasibility Study of Green Cement Production from Recycled Fly Ash

Hafiz Miqdad Masood¹,

Department of Chemical Engineering, NFC Institute of Engineering & Fertilizer Research, Faisalabad

*Corresponding Author: miqdad_masood@Outlook.com

ABSTRACT

This Research includes that how to switch from prior techniques towards the green cement. Green cement is environment friendly and less producing the carbon dioxide in the environment. First of all it seems that the possibility of best replaceable recycled material which is fly ash. There are lot of materials which can replace the cement in making concrete like the rice husk, sugar cane, furnace slag etc. but we have worked on fly ash as recycled material which has the same constituents required for making cement and fly as required less amount of energy as fly ash already burned that's why generation of carbon dioxide is less. In this thesis we have calculated the percentage amount of fly ash to limestone used for green cement production. In present study it can be replaced 80 to 100 percent of cement by fly ash but for this purpose we have to use sodium based activator. In this research work it have been found the best place for green cement plant in Sindh (Pakistan) in plant location and discussed all factors that affect the plant location.

Keywords: Green Cement, Limestone, Particle Size, Fly Ash, Clinker, Loss on Ignition (LOI).

1. INTRODUCTION

In light of the steady global drive towards environmental sustainability, emerging initiatives and decisions seek to implement more comprehensive measures towards the need to ne industrial wastes, mitigate anthropogenic emissions, and reduce energy consumption. Concrete is the world's most used construction material, with global estimates of 3.8 billion m³ per year which is approximately 9 billion tons [1, 2]. Its production is one of the most ecologically-taxing industrial practices, facing increased restrictions and harsher growing regulatory codes. In addition to being energy and emission intensive, the acquisition of concrete's major components (cement and aggregate) contributes to the heavy depletige of natural resources. The carbon emissions from cement manufacturing industries account approximately 5% of the total global anthropogenic carbon dioxide [3, 4]. It is estimated that a kg of Cement generates approximately 0.85 tons of CO2. Therefore, to replace the natural raw material substance with the waste material which has equally sustainable properties and eco-friendly more it's economical. In present study to promote the materials which are sustainable and environmentally friendly [5, 6]. Therefore, individual constituents can be substituted or modified with materials that exhibit similar or enhanced properties, to form varying composite materials, as long as the required concrete properties are maintained. Such constituent substitution can either result in high performance concrete variants aimed at specialist markets, or provide a variation of concrete

which appeals to developing nations, as it may not provide enhanced performance but it might meet basic material property requirements at a reduced cost. The material which replace the limestone and clay in terms of properties and economics are arble sludge powder, quarry rocks, coffee husk, rice husks, Sugar cane bagasse, silica fume, crushed concrete and fly ashes which are some of the materials used for making green concrete, a sustainable for construction. Limestone used as a major component in making the cement. Limestone properties that are used in these calculations are from the research paper given in reference [7-10]. An example of high performance concrete is the fly-ash concrete used for dam construction and river tunnels, [11] who exhibited a reduction in permeability, improved long- term strength and chloride resistance. An example of low-cost concrete for developing nations is the use of rice husk cement in Cuban low-cost housing panels researched by Swamy (1986), which has lasted over 18 years [12-14]. This research on the allocation and installation of the green cement plant weather it is possible or not in Pakistan. For this purpose this study has been done to find the ratio of the waste material to the natural raw material used (limestone). Focus on the environment friendly and to modify some new techniques to flourish in congenital environment.

2. EXPERIMENTAL PROGRAM

2.1 Green Cement

The natical color of cement is gray, varying between lighter and darker shades. What is green means? Obviously, "green" does not refer or means to the color of the cement. It refers to the philosophy that lies behind the new design concepts of cement plants which is green in nature. A grant cement plant is the plant that is designed to conserve all the natural resources which helps to release of the greenhouse gases (GHG) to the atmosphere [15-17].

13 2.2 Fly Ash

Fly ash or flue ash is known as pulverized fuel ash. Fly ash is a product of coal combustion that is consists of the particulates that are driven out of coal-fired boilers together with the flue gases. Ash that falls to the bottom of the boiler's combustion chamber is called bottom ash. Fly ash used as a waste recycled material for the making of green cement as it has many benefits like properties of fly ash which contains high amount of silica oxide and other materials that replace clay completely and abundant amant of limestone replaced. In present study the amount of fly ash used is calculated [18, 19]. Fly ash can replace 80 to 100 % of the cement in making concrete but for this purpose activator is used. Some researcher investigated that fly ash could be replaced from limestone and clay, 30% fly ash in place of limestone and clay like materials gave better results [20, 21]. Benefits of using Fly ash: Makes use of industrial waste. Requires less energy as fly ash is already burned, limited carbon dioxide emissions in the snvironment, beneficial for contractors, making cement from fly ash is long lasting, Production of multi-component cements enables rin only fuel energy savings (by 30-40%) but also increased volumes of concrete production and use of fly ash allows optimization of the main characteristics of cement clinker and reduction of CO₂ emissions due to a greater cement/clinker ratio [22, 23]. In the future, emitting CO₂ may attract penalties. Therefore clinker making process will be increasingly replaced by materials like fly ash, slag, limestone powder, natural pozzolans, etc. The type of additive that we used for making composite cement will depend mainly on its local

availability. From this point of view, fly ash suggests itself as the most convenient additive for use in cement plants [24, 25].

3. EXPERIMENTAL PROCEDURE

The manufacturing process of green cement plant is the same as the usual cement manufacturing process. In present study use the dry process for manufacturing the green cement because dry process uses less amount of water as compare to wet process and less economical process. In dry process, first step is the mixing of raw material as possible by reducing the size of the material because solid mixing is difficult as shown in fig. 1. Then the material is to be burned in the kiln and pre-heater. Clinker is made in the cooler after sudden cooling of the output material of the kiln. Grinding is to be done of clinker and gypsum to increase the settling time of the Cement. Last step is the storage of Cement Storage, packaging and dispatch [26-28].

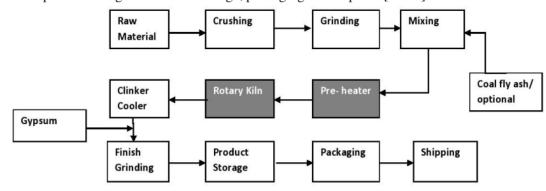


Fig.1 PFD of cement plant

There is no proper setup for Green Cement in Pakistan. In fact, there is no plant in world that works on Green Cement at large scale production. In present study the availability of raw material is the big challenge to installing this green cement plant. Mostly factors that will directly influenced on the plant feasibility technique.

3.1 Idea for Plant Installation

In Pakistan there is excessive availability of the fly ash, in other words, fly ash cannot be utilized for industrial process, known as a waste material and can harm the environment and land. So, the present research purpose is to install the green cement plant in Pakistan.

In Pakistan there are many coal based power plants which produces large amount of fly ash and also there are many coal based power plant in progress, this plants is feasible in Pakistan due to the availability of raw material in large amounts. Pakistan is that place where both raw material that consider in our research limestone and fly ash available near the Jamshoro in Sindh province. So, Sindh is ideal place for installing a plant and it is valuable for both investor and locally located person.

4. RESULTS AND DISCUSSION

To investigate the amount initially for installing a 1000 MTPD of clinker for green cement on large scale according to Pakistan standard based cement given in below table 1. According to present calculations these data is necessary to proceed and on this basis calculation is required from limestone, fly ash and coal ash which is generated during the combustion process in kiln and pre-heater.

Table 1: Final composition of cement required according to Pakistan standards (PS-232) [29]

Compound	%age	Amount	
(tons/day)			
C ₃ S	53.8	538	
C_2S	20.19	201.9	
C_3A	6.4	64	
C ₄ AF	12.04	120.4	
LOI (Loss	on1.92	19.2	
Ignition) IR (Insoluble0.4 Residue)		4	
Alkali eq.	0.6	6	
MgO	2.84	28.4	
Cl_2	0.01	0.1	
Free lime	1.8	18	
Total	100	1000	

For the final calculation of cement composition the amount of raw material needed is, for this pose used the data of local fly ash produced by Jamshoro power generation plant. So the composition of fly ash used is given in table 2,

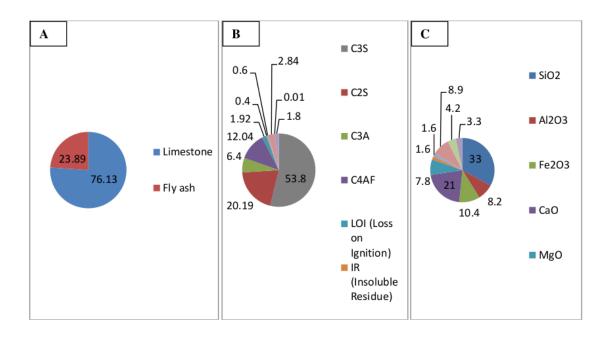


Fig.2 (A) Feed composition (B) Final composition of cement (C) Fly ash composition

In fig.2 (A) explains the amount of feed stock require for the green cement production indicates almost 24 % fly ash obtained form power plant used as a source. Fig.2 (B) indicates the presence of components in green cement having large amount of C₃S which is important in cement binding and finishing. Fig.2 (C) indicates the composition of ash having large abundance of SiO₂ which is 33% important for replacement of direct use of sand already exists in fly ash, no cost for initial purchasing and processing.

Table 5: Fly ash composition of Jamshoro power generation plant [31]

Component	%age	Amount	
			(tons/da
SiO_2	33	118.8	
Al_2O_3	8.2	29.52	
Fe ₂ O ₃	10.4	37.44	
CaO	21	75.6	
MgO	7.8	28.08	
$Na_2O + K_2O$	1.6	5.76	
TiO_2	1.6	5.76	
SO_3	8.9	32.04	
LOI (Loss on Ign	nition4.2	15.12	
Undetermined	3.3	11.88	
Total	100	360	

Initially investigate the 1000 MTPD, the amount of limestone and the fly ash needed as present

work want to replace major part of limestone and completely replaced clay with fly ash. Results show that fly ash has the property to replace completely with clay. As clay has major part is silica which is abundantly available in fly ash as shows in table 5.

Table 2: Consumption of raw material in grey cement production in tons

Compound	Per tons clinke	Per tons er cement	Per year per Mt clinker
Limestone, clay, shale	1.57	1.27	1568000
Gypsum anhydrite		0.05	61000
Mineral additives		0.14	172000

In table 2 indicates the large amount of limestone need to produce green cement which is quite expensive to handle as compared to fly ash having their own clay and limestone. The limestone calcium 12 de is the major component used for the green cement production and it is easily available in fly ash. The amount percentage of fly ash that is used to replace the limestone is 24% approximately but it may increase according to requirement as I suggest that it is just an initial step towards creating a plant on based of recycled fly ash. There are also more recycled material that can be replaces limestone and clay just like a rice husks but the feasibility of that material is not good and availability of rice husks is low. Rice husks making cement has lowest amount of carbon dioxide emission.

4.1 Effect of Particle Size

In present study the particle size has marginal effect on the production of green cement. As increase in particle size the effect of cost for size reduction and quality decline to the standards. On the contrary, small particle size has large surface area and yield ratio is comparatively better due to efficient increased the activity than large particle size. In present stud capacity can be according to desired requirement. The amount of fly ash replace from 30 % fly ash to 100% but for this case sodium based activator added instead of limestone and clinker. But present study shows that easily replace limestone up to 30 to 40%.

Table 3: Raw material composition of clinker for grey cement

Silica Alumina	Sand, fly ash Clay, shale, fly ash	17-25 2-5
Alumina	Clay, shale, fly ash	2-5
Iron oxide	Iron ore	0-3
Total		100

Table 4: Feed amount [30, 31]

Limestone	1146.49	76.13
Fly ash	360	23.89
Fly ash Total	360 1506.49	23.89

Table 3 and 4 shows the importance of feed composition require for the production of grey and green cement. Fly ash as a feed in green cement almost 24 % and no further amount of silica, alumina and iron oxide required because fly ash consist of all kind of constitutes which is separately require for processing. If the consideration is made on the basis of 1000 MTPD then the amount of fly ash require is given in table 4.

4.2 Energy/Water Consumption

Energy consumption is more in case of large particle size both crushing and grinding is required to convert the material into desired size also in figure rotary kiln and pre-heater. In case of wet process large amount of water is converted to moisture when shifted to the cooler and heater make high loss of weight with flue gases. This can be improved by utilizing some kind of pre-heater before going to process. Energy consumption control by using the temperature of flue gases into steam generator, continuous removal of blow down which are particulate matters slightly affect the efficiency of process, and implement the pinch/recycling techniques. Availability of water depend on the location and process selection, utility section heavily depend on the water, which create the impurities and corrosion.

4.3 Emission to Air

Comparatively the way of manufacturing the green cement has low emission than gray cement. Table 6 shows the amount of particulate matters released during the process, SO₂ amount is very high which has environmental restrictions in case of grey cement but in green cement manufacturing the SO₂ amount present in fly ash is short given in table 4, which already being processed from power generation plant.

Table 6: Emission ranges from cement kiln

Pollutant	mg/Nm3 Per tons clinker	Tons Per
		year
NO_X	145-2040 0.33-4.67	334-4670
SO_2	Up toUp to 11.12	Up to
	4837	11125
DUST	0.27-22730.00062-0,5221	0.62-522
		460-11500
CO	200-2000 0.46-4.6	1.5456milli

			on
CO_2		Approx.672g/tons	2,176-267
TOC*/VOC*	1-60	0.0023-0.138	0,21-23.0
HF	0.009-1,0	0.021-2.3g/t	0.046-46
HCL	0.02-20,0	0.046-46g/t	0.0000276-
			0.627g/year

^{*}Total organic compound/ vaporized organic compound

5. CONCLUSIONS

This research concludes that it is easy to replace limestone with fly ash with some amount but in present case replaced it for 24% approximately which is the initial step. Need to find the more ways which can be eco-friendly, economical and most probably have to use the local waste material as recycled material and use of local industrial waste. This research is completely base on Pakistan and to create a plant in Pakistan on based of fly ash. Most countries like India and china worked on this but on small scale because the amount of both raw material not available in same place easily. The advantage to install green plant in Pakistan the fly ash get from Jamshoro power plant near the Jamshoro approximately 5 km from west there are huge resource of limestone available. Further required data collect from the Geological Survey of Pakistan and Sindh Bureau of Statistics Planning & Development Department.

ACKNOWLEDGEMENT

Technical and financial support from NFC Institute of Engineering & Fertilizer Research, Faisalabad, Pakistan for this research work is acknowledged.

REFERENCES

- [1] V. W. Y. Tam, M. Soomro, and A. C. J. Evangelista, "A review of recycled aggregate in concrete applications (2000–2017)," *Construction and Building Materials*, vol. 172, pp. 272-292.
- [2] A. U. Zaman, "A comprehensive study of the environmental and economic benefits of resource recovery from global waste management systems," *Journal of Cleaner Production*, vol. 124, pp. 41-50.
- [3] D. B. Mul'îller, G. Liu, A. N. LÃ, vik, R. Modaresi, S. Pauliuk, F. S. Steinhoff, and H. BrattebÃ, "Carbon emissions of infrastructure development," *Environmental science & technology*, vol. 47, pp. 11739-11746.
- [4] L. K. Turner and F. G. Collins, "Carbon dioxide equivalent (CO2-e) emissions: A comparison between geopolymer and OPC cement concrete," *Construction and Building Materials*, vol. 43, pp. 125-130.
- [5] N. A. Qambrani, M. M. Rahman, S. Won, S. Shim, and C. Ra, "Biochar properties and eco-friendly applications for climate change mitigation, waste management, and wastewater treatment: A review," *Renewable and sustainable energy reviews*, vol. 79, pp.

- 255-273.
- [6] O. Kizinieviĕ, V. KizinieviÄ•, I. Pundiene, and D. Molotokas, "Eco-friendly fired clay brick manufactured with agricultural solid waste," *Archives of Civil and Mechanical Engineering*, vol. 18, pp. 1156-1165.
- [7] J. M. Paris, J. G. Roessler, C. C. Ferraro, H. D. DeFord, and T. G. Townsend, "A review of waste products utilized as supplements to Portland cement in concrete," *Journal of Cleaner Production*, vol. 121, pp. 1-18.
- [8] R. Stulz and K. Mukerji, "Appropriate Building Materials: a Catalogue of Potential Solutions."
- [9] M. Antoni, J. Rossen, F. Martirena, and K. Scrivener, "Cement substitution by a combination of metakaolin and limestone," *Cement and Concrete Research*, vol. 42, pp. 1579-1589.
- [10] R. Walker and S. PavÃ-a, "Physical properties and reactivity of pozzolans, and their influence on the properties of limeâ€"pozzolan pastes," *Materials and structures*, vol. 44, pp. 1139-1150.
- [11] Q. Bu, H. Lei, S. Ren, L. Wang, Q. Zhang, J. Tang, and R. Ruan, "Production of phenols and biofuels by catalytic microwave pyrolysis of lignocellulosic biomass," *Bioresource technology*, vol. 108, pp. 274-279.
- [12] T. Naicker, "An investigation into the use of waste materials for concrete applications in the South African construction sector."
- [13] R. Mattone, "Ferrocement in Low Cost Housing: An Application Proposal," *Journal of ferrocement*, vol. 22, pp. 181-181, 1992.
- [14] R. N. Swamy and R. N. Swamy, *Cement replacement materials* vol. 3: Surrey University Press Sheffield, 1986.
- [15] C. J. Kibert, Sustainable construction: green building design and delivery: John Wiley & Sons.
- [16] H. Kamarudin, Y. M. Liew, A. Mohd Mustafa Al Bakri, M. Luqman, I. Khairul Nizar, and C. Y. Heah, "Investigating the possibility of utilization of kaolin and the potential of metakaolin to produce green cement for construction purposes-A review."
- [17] E. Benhelal, G. Zahedi, and H. Hashim, "A novel design for green and economical cement manufacturing," *Journal of Cleaner Production*, vol. 22, pp. 60-66.
- [18] M. Ahmaruzzaman, "A review on the utilization of fly ash," *Progress in Energy and Combustion Science*, vol. 36, pp. 327-363.
- [19] N. S. Pandian, "Fly ash characterization with reference to geotechnical applications," *Journal of the Indian Institute of Science*, vol. 84, p. 189.
- [20] G. Xu and X. Shi, "Characteristics and applications of fly ash as a sustainable construction material: A state-of-the-art review," *Resources, Conservation and Recycling*, vol. 136, pp. 95-109.
- [21] N. Cristelo, S. Glendinning, L. Fernandes, and A. n. T. Pinto, "Effects of alkaline-activated fly ash and Portland cement on soft soil stabilisation," *Acta Geotechnica*, vol. 8, pp. 395-405.
- [22] U. N. Environment, K. L. Scrivener, V. M. John, and E. M. Gartner, "Eco-efficient cements: Potential economically viable solutions for a low-CO2 cement-based materials industry," *Cement and Concrete Research*, vol. 114, pp. 2-26.
- [23] M. C. G. Juenger, R. Snellings, and S. A. Bernal, "Supplementary cementitious materials: New sources, characterization, and performance insights," *Cement and Concrete*

- Research, vol. 122, pp. 257-273.
- [24] Z. Zhang, J. L. Provis, A. Reid, and H. Wang, "Geopolymer foam concrete: An emerging material for sustainable construction," *Construction and Building Materials*, vol. 56, pp. 113-127.
- [25] B. Cai, J. Wang, J. He, and Y. Geng, "Evaluating CO2 emission performance in China's cement industry: an enterprise perspective," *Applied energy*, vol. 166, pp. 191-200.
- [26] S. Hashimoto, T. Fujita, Y. Geng, and E. Nagasawa, "Realizing CO2 emission reduction through industrial symbiosis: a cement production case study for Kawasaki," *Resources, Conservation and Recycling*, vol. 54, pp. 704-710.
- [27] F. A. C. Oliveira, J. C. Fernandes, J. Galindo, J. RodrÃ-guez, I. Canadas, V. Vermelhudo, A. Nunes, and L. s. G. Rosa, "Portland cement clinker production using concentrated solar energyâ€"A proof-of-concept approach," *Solar Energy*, vol. 183, pp. 677-688.
- [28] E. Worrell, K. Kermeli, and C. Galitsky, Energy efficiency improvement and cost saving opportunities for cement making an ENERGY STAR® guide for energy and plant managers: EPA-United States Environmental Protection Agency.
- [29] W. Shah, M. Nafees, and M. Iqbal, "Evaluation of marble slurry waste for preparation of commercial grade cement," *J. Engineering and Appl. Sci*, vol. 34.
- [30] M. A. Rajper, A. G. Memon, and K. Harijan, "Energy and exergy analysis of 210 MW Jamshoro thermal power plant," *Mehran university research journal of engineering and technology*, vol. 35, pp. 265-274.
- [31] K. Shaikh, U. Imran, and S. Shaikh, "Health risk assessment for emissions from Jamshoro thermal power station using AERMOD dispersion model," *J Ind Pollut Control*, vol. 34, pp. 2142-2151.

Similarity

ORIGINALITY REPORT

12% SIMILARITY INDEX

6%

INTERNET SOURCES

11%

PUBLICATIONS

STUDENT PAPERS

PRIMARY SOURCES

S.P. Deolalkar. "Composite Cements", Elsevier BV, 2016

Publication

S.P. Deolalkar. "What is a Green Cement Plant", Elsevier BV, 2016

Publication

www.irjet.net

Internet Source

2%

eippcb.jrc.ec.europa.eu

Internet Source

www.alispezzate.it 5

Internet Source

onlinelibrary.wiley.com

Internet Source

www.elvema.co.za

Internet Source

Karma Wangchuk .. "GREEN CONCRETE FOR SUSTAINABLE CONSTRUCTION", International Journal of Research in Engineering

9	Submitted to Griffth University Student Paper	<1%
10	www.iccs16.org Internet Source	<1%
11	Submitted to Central Queensland University Student Paper	<1%
12	James G. Speight. "Chemicals in the Environment", Elsevier BV, 2018 Publication	<1%
13	ijraset.com Internet Source	<1%
14	Devi Prasad Mishra, Samir Kumar Das. "A study of physico-chemical and mineralogical properties of Talcher coal fly ash for stowing in underground coal mines", Materials Characterization, 2010 Publication	<1%
15	"Proceedings of SECON 2020", Springer Science and Business Media LLC, 2021 Publication	<1%
16	Benhelal, Emad, Gholamreza Zahedi, Ezzatollah Shamsaei, and Alireza Bahadori. "Global strategies and potentials to curb CO2 emissions in cement industry", Journal of	<1%

Cleaner Production, 2013.

Publication

Exclude quotes On Exclude matches < 5 words

Exclude bibliography On